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1. Introduction 
 
The Gaussian copula model does not fit the credit market, and the base correlation method of 
forcing it to fit has several disadvantages. Its main drawbacks are a theoretical possibility of 
arbitrage; actual arbitrage in practice; and difficulties in extending the method to price 
bespoke baskets and more exotic products. 
 
In this paper we will propose a family of Levy structural models which fit the market better 
than the Gaussian copula. These models are intuitive, easy to implement, and provide 
insights into both risk management and relative value opportunities. They also extend to 
bespoke baskets and more exotic products. 
 
The economic idea behind the model is that the tails of the Gaussian distribution are too thin 
to model the credit market accurately. Although the Gaussian distribution is widely used in 
other asset classes, it is rarely suitable for extreme out-of-the-money options. But almost all 
credit default events are extreme events which are controlled by the tail of the distribution. For 
this reason we reject Brownian motion and look for alternative stochastic processes which 
have heavier tails. 
 
As movements in the credit market are sometimes sudden and jump-like, we choose to work 
with Levy processes. These can have both jumps and heavier tails, as we desire. We will also 
show a way of creating multi-variate Levy processes, which will allow us to break up an 
entity’s jumps into global jumps and idiosyncratic jumps. This mirrors the reality of market 
movements - May 2005 was a global jump and Parmalat was an idiosyncratic jump. 
 
There has been growing interest recently in studying jump models of individual names. Joshi 
and Stacey (2005) developed a method with a global time-scale factor (intensity gamma) and 
they achieve CDO calibration. An economic drawback is that it does not allow idiosyncratic 
spread jumps and its practical limitation is that it requires Monte Carlo. Schoutens (Jan 2006) 
drives the intensity as a gamma OU process with spread up-jumps, and has success with 
CDS calibration, but not CDO calibration. Luciano and Schoutens (Dec 2005) have a 
multivariate gamma process also using a global time-change clock. This also has no 
idiosyncratic spread jumps, and does not match CDO prices. 
 
2. Levy processes 
 
Let us give a brief summary of the basic properties of a Levy process. Winkel (2004) gives a 
brief introduction, and Applebaum (2004) is a very useful reference for Levy processes.  Levy 
processes are, in some sense, a generalisation of Brownian motion to contain drift, Brownian 
motion, and jump terms. Formally a stochastic process X(t) is a Levy process if 
 

• X(0) = 0, 

• X has stationary increments, that is )()()( tXsXtsX
d
=−+ , 
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• X has independent increments, that is )()( sXtsX −+  is independent of 

( )suuX ≤:)( , and 

• (technical continuity condition), 0)|(|lim =>−
→

εstst
XXP , for all positive ε. 

 
Given sufficient boundedness on X, its moment generating function can be written as 
 

( ) ( ))(exp)exp( θψθ tXE t =  , 
 
where the Levy symbol of X is ψ(θ) which can be decomposed as 
 

( )∫
∞

∞−
−++= dxxx )(1)exp()( 22

2
1 νθθσμθθψ . 

 
Its three terms correspond to: 
 

• Constant drift, where μ is the drift coefficient 
• Brownian motion, where σ is the volatility 
• Pure-jump term, where the Levy measure ν gives the intensity of the Poisson arrival 

process of jumps of size x. That is, jumps whose size lies in [x, x+dx] occur as a 
Poisson arrival process with intensity ν(x)dx. 

 
A useful basic Levy process is the Gamma process, which is a pure-jump increasing process 
with Levy measure 
 

)exp()( 1 xxx λγν −= − , x>0, and 
Levy symbol )/1log()( λθγθψ −−= . 

 
The Gamma process has marginal distributions which follow the (continuous) Gamma 
distribution. Its parameters are gamma (γ) which controls the jump intensity, and lambda (λ) 
which controls the inverse jump size. We notate it as X(t) = Γ(t;γ,λ). 
 
Another process of interest is the Variance Gamma process which is the difference of two 
Gamma processes 
 

).,;(),;(),,;()( duud tttVGtX λγλγλλγ Γ−Γ==  
 
This process was first used in finance by Madan et al (1998), and for modelling credit by 
Moosbrucker in 2006. 
 
 
3. Credit models for single names 
 
We begin with a simple structural model for a single credit name. We define the value of the 
firm, or a proxy for it, as the log-Gamma process 
 

( )ttSSt μλγ +Γ−= ),;(exp0 , where )1log( 1−+= λγμ . 
 
Thus we are assuming that S(t) is a positive martingale with up-drift and down-jumps. This 
simple model assumes that “no news is good news”. We also assume that the entity defaults 
when S(t) goes below a threshold c. 
 
We note two extreme cases. As gamma tends to infinity, and σγλ /~ , then S(t) tends to 
the log-normal process 
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( )tWSS tt
2

2
1

0 exp σσ −= . 
 
At the other extreme, as gamma tends to zero, and )/exp(~ γλ h− , then S(t) becomes the 
constant default-intensity model 
 

)()exp(0 tIhtSSt >= τ , where τ ~ exp(h), the exponential default time. 
 
These two cases represent the archetypal extremes of credit defaults. In the log-normal case, 
spreads widen continuously until default, giving warning of the impending default. (Argentina 
is a relevant example.) In the second case, spreads never change and defaults happen with 
no warning at all. (Parmalat was more like this.) The gamma parameter lets us model a 
situation somewhere in between these extremes.  
 
For calculating the default probability we need to evaluate 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ =>−Γ=<=

≤≤
)/log(:),;(sup)inf(:)( 0 cSkttPcSPcp

Tt
tTtT μλγ . 

 
There are two ways of doing this. The simplest is just to use the european approximation: 
 

( )kXPcp TT >≅)( , where .),;( ttX t μλγ −Γ=  
 
A more sophisticated approach is to estimate the actual barrier probability using numerical 
methods. This is more computationally intensive than the european approximation, but can be 
used in tests to monitor the accuracy level of the european approximation. 
 
The european approximation will not give identical results to the barrier-style method for the 
same parameters. Instead we would like to be able to calibrate the european-style method so 
that the european method with european-style parameters closely matches the barrier-style 
method using barrier-style parameters. If that could be done, then we could have confidence 
that the european-calibrated european-style prices were a good match for the actual barrier 
prices of trades. 

 
Example – term structure of a single credit 
 
The graph below shows the 10y term structure of credit default swap spreads under three 
different modelling assumptions. Parameters have been chosen to match approximately the 
shape of the CDX 125 S7 index spreads as at 24-Nov-2006. The curves show: 
 
(1) Gamma model, with barrier pricing method, and (barrier-calibrated parameters) of γ at 
49%, and λ at 3.18. 
(2) Gamma model, with european pricing method, and (european-calibrated parameters) of  γ 
at 49%, and λ at 1.50. 
(3) Brownian motion barrier model, X(t) = W(t) + μt, defaulting when X(t) hits a barrier, with μ 
set to 0.153. 
 
The basket’s index spreads are also shown. We have deliberately constrained the important 
gamma parameter in the european-calibration to equal the barrier-calibration’s gamma, but 
allowed lambda to calibrate separately. 
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We see that the european and barrier versions of the Gamma model are very similar, and are 
a rough fit to the actual market curve. The Brownian curve also approximates the market 
curve, but it underestimates the market spreads at the short end. We do not need the fit to the 
market curve to be exact, as we will allow the threshold to have a term structure, but it is 
important that the fit is reasonable to justify the basic form of the model. 
 
For this paper, we will use the european approximation throughout, but it is possible to rework 
the results with the slower barrier formula. We will also check the barrier formula on CDO 
prices below. 
 
Extensions 
 
We can extend the basic model in a number of ways. 
 
(a) We can add “good news” jumps by using the Variance Gamma process instead of the 
Gamma process. 
(b) We can add a global catastrophe term with a low-intensity high-impact global factor (such 
as a Poisson process or other Gamma process). 
(c) We can add a Brownian motion term to get continuous random movement as well. 
 
We can also add various combinations of these, such as Brownian-Variance-Gamma, 
Catastrophe-Variance-Gamma, and so on. In fact any Levy process can be used in our CDO 
modelling, as we shall now describe. 
 
 
4. Portfolio credit models 
 
We need to extend our single-name model to a multi-variate correlated model of a portfolio of 
names. To do this, we need a way of generating multi-variate Levy processes with a given 
marginal distribution. 
 
Lemma. Multivariate Levy construction 
For any Levy process X(t), any integer n, and any non-negative correlation φ, we can 
construct a set of n Levy processes X1(t), X2(t), …, Xn(t), such that each Xi(t) has the same 
distribution as X(t), and the correlation between Xi(t) and Xj(t) is φ for all distinct i  and j. 
 
Proof. 
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Start by making n+1 independent copies of X(t), called )(~,),(~),( 1 tXtXtX ng K . Then define 
 

( )tXtXtX igi )1(~)()( φφ −+= . 
 
Then, by the stationarity and independent-increment properties of Levy processes, it is 
immediate that Xi(t) is a Levy process with the same distribution as X(t). If X(t) has second 
moments, then 

ttXVar i
2))(( σ= , for some σ, and hence 

,))(),(( 2 ttXtXCov ji φσ=  so .))(),(( φ=tXtXCorr ji  
 
An alternative construction is that we construct the global factor Xg(t) as a Levy process with 
Levy symbol ψg, and )(~ tX i  as IID Levy processes with Levy symbol ψi , where 
 

)()( θφψθψ =g , )()1()( θψφθψ −=i , and ( )tXtXtX igi
~)()( += . 

 
Even if X(t) does not have second moments, this representation has the interpretation that a 
fraction φ of movements of a single name are due to global effects which affect all other 
names too.  
 
Given this lemma, we can formulate our CDO model as follows. 
 
We construct a correlated set of state variables from some independent Gamma processes 
as 
 

).,)1(;(),;()( λγφλφγ −Γ−Γ−= tttX igi  
 
This decomposes the log-value of the entity into a global and an idiosyncratic Gamma 
process. We assume, as before, that the entity has defaulted by time t, if )(tX i  is below a 
threshold. This threshold can be calibrated to match precisely the survival probability of the 
entity to that date. 
 
We note that the lambda parameter is redundant, due to scaling. So the Gamma model has 
only two parameters – gamma and phi. 
 
As an aside, we can reformulate the Gaussian copula as a combination of global and 
idiosyncratic normal random variables as 
 

igi ZZX ρρ −+= 1 . 
 
This itself can be rewritten as a sum of time-changed Brownian motions as 
 

( )tWtWtX igi )1()()( ρρ −+= , 
 
which matches our general Levy multivariate structure. 
 
 
5. Calibration and model comparison 
 
Our general calibration procedure is take the market’s tranche capital structure for a given 
liquid basket and optimise the model’s parameters to achieve the best fit. 
 
The objective function we used is the root mean-squared error, 
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where the sum is taken over the n non-equity tranches of the capital structure, and Mkt(tr) and 
Model(tr) are respectively the market and model par spreads for tranche tr. This scheme uses 
a simple weighting, which ignores equity, but other weighting schemes can be used to 
redistribute the pattern of fitting errors. 
 
The results of the calibration for the CDX 125 S7 basket, as at 28-Nov-2006, are shown in the 
table. 
  
 5y CDX S7 7y CDX S7 10y CDX S7 

Tranche Market Model Market Model Market Model 
0% - 3% 24.6% 26.6% 40.6% 44.5% 51.1% 52.7%
3% - 7% 91.0 90.5 210.0 210.2 426.0 427.2

7% - 10% 18.4 19.4 46.8 46.1 110.0 109.1
10% - 15% 6.5 7.3 19.0 20.2 51.5 54.0
15% - 30% 3.1 1.6 6.0 5.9 14.8 21.0

30% - 100% 1.4 0.04 2.3 0.4 3.9 2.4
Fit score (bp)  1.1 1.1 3.2
 
The best fit score is also shown (the root-mean-square error in basis points), which excludes 
the equity error. The general fitting quality is quite good, but not perfect. The larger errors are 
in 

• equity tranches, which are excluded from the fitting objective. Especially in 7y which 
has a 4% error. This can be reduced by including the equity tranche in the objective 
function, at the expense of the other tranches. 

• senior and super-senior. The model’s ratio of the senior spread to the super-senior 
spread has values 35, 15 and 9, compared with the market’s values of 2, 3 and 4. We 
have not been able to find any model which comes close to these ratios of market 
prices. Those market price ratios are close to implying an arbitrage opportunity, as 
buying senior protection and selling (more) super-senior protection will make money 
for many plausible scenarios on recovery rates and conditional default probabilities. 

 
The equivalent results for iTraxx 125 S6, also at 28-Nov-2006, are shown here. 
 
 5y iTraxx S6 7y iTraxx S6 10y iTraxx S6 

Tranche Market Model Market Model Market Model 
0% - 3% 14.0% 15.5% 28.9% 30.9% 42.4% 46.0%
3% - 6% 63.0 62.6 144.0 144.0 345.5 346.9
6% - 9% 17.3 17.7 42.5 42.5 109.0 106.8

9% - 12% 7.0 7.9 21.3 20.8 47.8 51.1
12% - 22% 2.9 2.7 7.3 8.1 15.0 19.6

22% - 100% 1.2 0.1 1.9 0.6 3.4 1.3
Fit score (bp)  0.7 0.7 3.0
 
The fitting behaviour is similar to CDX. 
 
The parameter values which achieved these fits were 
 
 CDX Gamma CDX Phi iTraxx Gamma iTraxx Phi
5y 152.5% 8.9% 135.5% 9.4%
7y 49.2% 10.6% 60.3% 11.5%
10y 15.5% 19.5% 45.8% 13.7%
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These parameters have the typical behaviour of decreasing gamma with maturity, and 
increasing phi. Gamma levels are also relatively high in November 2006, which we shall 
discuss below. 
 
We can also perform the calibration using the barrier formula, rather than the european 
approximation. In this case the 5y CDX fitted spreads are: 25.9%, 90.5, 19.4, 7.2, 1.5, and 
0.04. These are almost identical to the european fitted values, though with slightly different 
calibrated parameters (Gamma 158%, Phi 10%, Lambda 50%), so the net effect of the barrier 
formula is similar to a small change in co-ordinates rather than different model prices.  
 
We have also performed a comparison test of a variety of Levy process models. The models 
used were: the basic Gamma model (down jumps only); Variance Gamma (asymmetric up 
and down jumps); Brownian Gamma (down jumps plus diffusion); Brownian Variance Gamma 
(symmetric up and down jumps plus diffusion); Catastrophe Gamma (down jumps plus global 
catastrophe factor); Catastrophe Variance Gamma (symmetric up and down jumps plus 
catastrophe). Additionally the Gaussian copula, without Base Correlation, was included for 
reference. 
 
All the models were calibrated to historical market data over the period 12 October 2005 to 5 
April 2006, using one date per week. 
 

Model 
CDX 
5y 

CDX 
7y 

CDX 
10y 

iTraxx 
5y 

iTraxx 
7y 

iTraxx 
10y 

Average 
(bp) 

Catastrophe Gamma 1.4 7.9 15.4 1.1 7.0 8.7 6.9
Variance Gamma  2.9 9.6 15.7 2.9 9.6 7.0 8.0
Gamma 3.3 7.7 17.2 3.2 6.8 17.0 9.2
Brownian Gamma 4.7 11.1 18.3 3.9 9.2 13.8 10.2
Brownian Var Gamma 2.8 21.9 44.2 2.3 18.2 40.6 21.7
Cat Var Gamma 1.4 28.6 48.1 1.0 26.4 34.7 23.4
Gaussian copula 38.9 66.1 76.3 33.6 75.7 83.9 62.4
 
The average pricing error along the capital structure (these runs included the equity tranche) 
is shown for each basket/maturity combination, and the total average is in the rightmost 
column.  
 
The Gaussian copula, as expected, performs badly with an average spread error of 62bp. All 
the Levy based models are significant improvements on the Gaussian copula. The Brownian-
Variance-Gamma and Catastrophe-Variance-Gamma, which both have symmetric up and 
down jumps, are relatively poor performers. This suggests that it is important that up-jumps 
be different to (and smaller than) the down-jumps.  
 
Interestingly, the best four models have quite similar scores, lying in the range 7-10bp. Of 
these, the Gamma model has the fewest parameters and greater parameter stability. This 
parsimony encourages us to focus on the Gamma model as our favoured model at this stage. 
 
We can calculate the historical gamma and phi parameters for the Gamma model. We have 
data which lets us do this daily from 1 April 2005 up to 20 November 2006. The gamma 
parameter is graphed first, then the phi parameter. 
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We see that the auto crisis of May 2005 was linked to a crash in the value of gamma from 
about 80% down to 10%. Since then, gamma has been gradually increasing, with a faster 
increase in November 2006, which some market commentary called the “reverse correlation 
crisis” (Creditflux 3 November 2006). 
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Phi was relatively stable during the auto crisis, though noisier shortly afterwards, and it 
trended downwards in the second half of 2005. During 2006 phi has been very stable.  
 
 
6. Parameter risks and hedging 
 
Risks are divided into credit spread risks and correlation skew risks. Because the model is 
“bottom up”, it readily shows credit spread risk (and recovery rate risk) to every name in the 
basket. This compares with “top down” approaches, such as Brigo et al (Nov 2006), which 
focus on the loss distribution and cannot easily give the credit risk of each name. 
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The correlation risk is given by the risks to the parameters. We can see the parameter risks of 
the CDX 125 S7 basket along its capital structure. The table shows the risk, tranche by 
tranche, for a $10 million buy-protection par 5y trade to a 1% increase in gamma and phi 
levels respectively.  
 
 d/dGamma d/dPhi 

0% - 3% -799  -50,532 
3% - 7% 1,384  15,270 

7% - 10% 135  8,142 
10% - 15% -87  4,423 
15% - 30% -110  1,612 
30% - 100% -20  137 
 
We see that when gamma increases, then the equity and senior spreads decrease and the 
mezz spreads increase. Increasing gamma moves value from the edges of the capital 
structure into the middle. 
 
When phi increases, equity spreads decrease and the mezz and senior spreads increase. 
Increasing phi moves value from the very junior tranches to the more senior. 
 
In base correlation terms, increasing gamma flattens the base correlation curve and 
increasing phi moves the base correlation curve upwards. A useful interpretation is that phi 
controls the average level of the base correlation curve, and gamma controls its slope. 
Indeed, as we saw earlier, an infinite gamma corresponds to the Gaussian copula and a 
perfectly flat base correlation curve. 
 
For risk management of a CDO portfolio we can hedge gamma and phi (by maturity) to flatten 
our risk. This is an advance on base correlation, where hedging is based on tranche-by-
tranche inventory management. Having a model allows parameter-based hedging, which is 
similar in spirit to the hedging of stochastic vol parameters in the interest-rate skew market. It 
also allows us to hedge different parts of the capital structure against each other. We can also 
price bespoke baskets using IG parameters (adapted as necessary), and hedge the risk with 
IG tranches. 
 
Case study: Auto crisis May 2005 
 
Prior to the auto crisis, many hedge fund investors had a “positive carry” trade, which involved 
selling equity protection and buying mezz protection. This was about flat in credit spread risk, 
and long correlation. It was not appreciated at the time, but this was also a long gamma 
position, as we can see from the risk table above. The crisis was marked by a general spread 
widening and a strong gamma sell-off (see gamma history plot above). This widened equity 
spreads (which are short gamma), but tightened mezzanine spreads (which are long gamma). 
So the investors (who were long gamma) lost money. 
 
Hindsight makes it easy to make the correct decisions in retrospect, but the Gamma model 
could have provided some risk management information beforehand. It would have warned 
potential investors both that they were running an exposed position in correlation skew 
(gamma), and also that gamma was trading at high levels. 
 
 
7. Implementation and other products 
 
The models presented here can be implemented in a similar way to many existing Gaussian 
copula implementations. In particular, they do not require Monte Carlo simulation, though it is 
possible to use it.  
 
Let us formulate the Gaussian copula model in a similar way to our Levy process dynamics as 
 

( )tWtWtX igi )1()()( ρρ −+= , 
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where W(g) and W(i) are global and idiosyncratic Brownian motions. Thus Xi is also a 
Brownian motion. Let us write F(x;t) for the common distribution function of X(t), Wg(t), and 
Wi(t). A sketch of the implementation could run as follows: 
 
(1) For each time t, calculate the threshold ));(()( 1 ttpFt ii

−=θ , where )(tpi  is the default 
probability of entity i by time t. 
 
(2) Integrate over the possible values of the global factor W(g), which has distribution function 
F(x;ρt). We can use either simple methods such as Simpson integration, or more 
sophisticated quadrature techniques. Both methods use an approximation of the form 
 

∑
=

=≅
m

k
kgkg yWpayoffEWpayoffE

1

)|())(( α , 

 
where y(k) are a discrete set of values of W(g), and α(k) are some weights.  
 
(3) Given that the global factor (W(g) = y), we calculate the conditional default probabilities of 
each entity 
 

( ) ( )tytFyWttXPtyp igiii )1(;)(|)()(),( ρθθ −−==≤= . 
 
(4) With these conditional default probabilities, we calculate the conditional expectation of the 
payoff. This is helped by the conditional independence of the entities’ values given W(g). The 
expectation can be performed by approximations such as a normal-approximation to the 
basket loss, or the ingenious bucket algorithm of Hull and White (2004). 
 
To change from the Gaussian copula to our new Levy models, all we have to do is replace the 
distribution function F used in steps (1), (2), and (3). Step (4) is unaltered. So the problem 
reduces to calculating the marginal distribution function for the various models we have used. 
 
Calculating the distribution function 
 
Gamma model. The Gamma model has marginal gamma distributions. Their distribution is 
already well approximated. See, for example, section 6.2 of Numerical Recipes (Press et al, 
1988). Quadrature integration against a gamma random variable is also possible, as 
implemented in routine gaulag of Numerical Recipes section 4.5. Run-time performance for 
the Gaussian copula and the Gamma model should be broadly similar. 
 
For calculating the inverse of the distribution function, it is effective to perform interval 
bisection to bracket the root initially, since the distribution function is monotonic, and then 
apply some Newton-Raphson iterations to polish it. 
 
Variance Gamma model. There is a time-change representation of the VG process as 
 

ttu AAWtVG μλλγ += )(),,;( , 
 
where W(t) is a Brownian motion, A(t) is a gamma ),;( 2

1
ut λλγΓ process, and μ is the drift 

)(2
1

ud λλ − . Thus ( ) ( )xAAZPxtVGP ttu ≤+=≤ μλλγ ),,;( . The probability can then 

be expressed as an integral conditional on the value of Γ=A(t) as 
 

( ) ∫
∞

Γ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=≤Γ+Γ

0
)( dy

y
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This integral can be performed efficiently using the gamma quadrature integration mentioned 
above. Numerical difficulties may occur when the ratio λλ /u  is extreme (larger than 10), so 
these cases might be excluded. 
 
Other models, such as Brownian Gamma, can be handled in similar ways. 
 
 
Performing the optimization 
 
Gamma model. The optimization for the Gamma model is relatively straightforward. There 
are only two parameters (gamma and phi) and they both have non-trivial and different effects 
on the tranche spreads. We use an optimiser similar to the Levenberg-Marquardt method, 
described in section 15.5 of Numerical Recipes. About half-a-dozen iterations are enough to 
get a good calibration. 
 
Other models. We use the same optimizer, but the situation is more complicated. The 
function mapping parameters to tranche spreads is significantly non-linear and the presence 
of semi-redundant parameters increases the difficulty. For such difficult parameters, we try 
optimizing whilst keeping that parameter fixed, and then we vary the parameter and optimize 
again. This is slow but effective.  
 
Other Products 
 
The model can be extended to price bespoke tranches, bespoke baskets and more exotic 
products. Bespoke tranches and tranchelets are priced immediately in the same way as 
standard tranches above. Bespoke basket baskets can also be priced, once we know the 
values of gamma and phi for the bespoke basket. Those, as ever, have to be estimated from 
the liquid basket parameters. Investment-grade parameters can be estimated as the average 
of the CDX and iTraxx parameters, and the high-yield basket CDX HY is also liquid giving an 
estimate of high-yield parameters. A straightforward bespoke pricing scheme is just to take a 
convex combination of the IG and HY parameter sets, driven by the spread of the bespoke 
basket. Bespoke pricing is never certain, so room still remains for trading judgement on a 
bespoke basket’s gamma and phi levels. So uncertainty is reduced down to two simple 
parameters. 
 
More exotic products, such as CDO-squared and long-short CDO, can also be priced under 
the model. By conditioning on the global factor, the product can be priced using the 
conditional independence of the names. 
 
 
8. Summary and conclusions 
 
We have presented a family of Levy process models for single-name credits and baskets. Of 
these, a simple and effective model is the Gamma model. This model has two parameters, 
which control respectively the average level and slope of the base correlation curve. 
 
The model is tractable to implement, with straightforward calibration. The model can price 
bespoke baskets and tranchelets, as well as exotic products such as CDO^2 and long-short 
CDOs. Risk management is provided with risks given to both every individual credit and the 
two skew parameters. This allows hedging of skew parameters across tranches and baskets. 
 
Using the european approximation to implement the model does, in theory, remove its fully 
dynamic character. But the actual barrier implementation, which is more dynamic, produces 
very similar calibrated prices. 
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