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1. Introduction 
 
Credit default events can happen in a variety of ways. Sometimes a credit slides towards 
default over a period of time, while other credits default instantly and without warning. 
Sometimes a credit's problems are unique to itself, but at other times many credits are 
influenced by common trends or events. 
 
No matter how the default event happens, it is important to remember that such credit events 
are relatively rare. The most likely outcome for (almost) any entity is survival. Practically, this 
means that the study of credit is the study of the tails of random distributions. 
 
These two separate observations make it necessary to use models that have both varied 
dynamics and the correct tail behaviour. This paper will present such a model. The model fits 
both CDS and CDO prices, is strongly intuitive, and is tractable to implement. Also it provides 
a credible dynamic of CDS spread evolution, opening up the possibility of pricing more exotic 
tranche-linked trades. 
 
There are two basic ideas behind the new model. Firstly, the tails of the normal distribution 
are too light to match the reality of market tails. In the equity market this is a recognised truth 
and low-strike equity premia are much higher than log-normal models would indicate. It can 
also be seen in the problems that simple Brownian structural models have when they 
underestimate short-term default intensities. In common with other recent research, the 
solution for this problem is to add jumps to the processes. This makes the tails of the 
distribution heavier and more realistic. 
 
The second idea, although itself simple, is based on the desire to get the correct complex 
dynamics. Existing continuous models have no jump terms, and existing jump models have 
no continuous terms. The new model has both. It has both a continuous Brownian-motion 
term and a discontinuous Variance-Gamma jump term. And each of these terms is further 
divided into a global (systemic) factor and an idiosyncratic (name-specific) factor. So in total 
there are four terms: global continuous, idiosyncratic continuous, global jump, and 
idiosyncratic jump. 
 
We can give an intuition for each of these factors along with relevant examples from the 
recent past. 
 
 Global factor Idiosyncratic factor 
Continuous Brownian 
component 
 

General trends, often driven 
by the credit cycle or equity 
index markets 

Entity-specific trend, such as 
Argentina, Delphi 

 
Discontinuous Variance-
Gamma jump component 

Sudden news at the global 
level, such as the 11-Sep-
2001 attack, General Motors 
downgrade. 

Firm-specific news, such as 
Parmalat, Railtrack 
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The model is structural, in that it assumes that credits are driven by a hidden process that is a 
proxy for the value of the firm. This process is modelled by a Brownian-Variance-Gamma 
(BVG) process as described above. There will now also be two “correlations” – one for the 
continuous movements, and another for the jumps. 
 
The model enjoys the property of being a genuine arbitrage-free dynamic model of spread 
evolution. It is consistent with CDS curves, has a small number of relatively stable 
parameters, and reprices CDO tranches. 
 
 
2. Single-name credits 
 
The model for an individual credit’s evolution is similar to independently developed work by 
others such as Schoutens (2006) and Moosbrucker (2006) in that it is a structural model with 
jumps. Unlike other published models it also includes a continuous term. 
 
The model takes the form of a new process, called Brownian-Variance-Gamma (BVG), which 
is the sum of a Brownian term and a Variance-Gamma process. The form we use is 
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where: 
 

o W(t) is a Brownian motion 
o parameter ρ is the square of the volatility. The choice of this notation will be clearer in 

the CDO section, when it will be used as a correlation 
o each Γi(t; γ, λ) is an independent gamma process with jump parameters γ (jump 

intensity) and λ (inverse jump size) 
 
The process X(t), which is a proxy for the value of the firm, is a Lévy process. This means it is 
a Markov process, with stationary independent increments. It is more general than the Lévy 
processes usually used in finance as it contains both continuous and discontinuous terms. Its 
advantages include a small number of parameters and computational feasibility. For 
simplicity, we have restricted the up and down jumps to be the same size. This can be 
relaxed without technical difficulty, but the increase in the number of parameters does not 
improve the results significantly. 
 
For details of Lévy processes, see the very good book by Applebaum (2004) and a useful 
brief introduction by Winkel (2004), as well as the paper by Madan et al. (1998) which 
introduced the Variance-Gamma process for modelling equity skew. 
 
Adapting a remark of Madan, our BVG process can also be represented (proof: via generating 
functions) as a time change of Brownian motion: 
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This means that its marginal distribution can be expressed in the useful form 
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where Z is a normal random variable and Γ(γt) is a gamma random variable with unit scale 
parameter. We can then approximate the default time at which the process goes below a 
threshold level θ as 
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where }0:)(inf{:)(* tssWtW ≤≤= . Another less-accurate approximation is useful for 
CDOs and more exotic options: 
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where θ needs to be re-calibrated to match survival probabilities. In either case, we can 
calculate default probabilities by conditioning on the gamma variable and using standard 
Brownian formulas. 
 
Parameter fitting 
 
We can assume, due to scaling, that the factor ρ is one. The threshold θ can easily be 
calibrated to fit the curve’s, say, 5y point. There only remains the jump parameters γ and λ to 
fit. This can be done over a set of credits, which may correspond to a credit basket correlation 
trade. Lambda controls the slope of the CDS curve: a small lambda implies a flatter curve, 
and a large lambda causes a steep curve. Gamma controls the shape of the front end of the 
curve: a small gamma implies a low front-end, and a higher gamma causes a higher front-
end. 
 
Alternatively the best global fit can be found for a basket of curves. The basket used may be 
either liquid or bespoke. Some fitted values and residual spread errors out to 10y are (market 
data of 9 March 2006): 
 

Basket Gamma Lambda 75% percentile 
worst case error

90% percentile 
worst case error

CDX 125 S5 46.4% 15.4% 8.4 bp 13.7 bp 
iTraxx 125 S4 46.0% 15.0% 7.0 bp 12.8 bp 
 
For 75% of credits in each basket, the spread errors are less than 10bp, and fewer than 10% 
of credits have errors more than 15bp. We do not need a perfect fit, and this level of accuracy 
is fully adequate. Indeed it is actually quite a good fit for a two-parameter model compared 
against 125 credit curves. The market and model CDS spread curves for a typical credit, 
Washington Mutual (which has the median error in the CDX basket), are shown in the chart: 
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As it happens, there is a large 2-dimensional set of points in gamma-lambda space which all 
produce good quality fits. This is encouraging, but means that identification of the parameters 
above is tentative. 
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There is only space here to briefly mention the dynamics of curve evolution under this model. 
The dynamics are quite intuitive, with credits most likely to carry down their curve, but with a 
small chance that spreads will blow out. 
 
We do not use this implied curve either to tell us where the market ought to be or to use it 
instead of market levels. (For actual calculations we will allow θ to depend on maturity to 
allow exact matching.) The curve is important because it tells us that the model is credible, 
and that it can be used as a basis for more complicated trades, such as baskets. 
 
 
3. Basket pricing 
 
We are now ready to use our model to price tranches on baskets. Prior to describing the new 
model, we can re-express the one-factor Gaussian copula model as a continuous-time model 
involving Brownian motions. The entity’s “value” X(i) is the sum of a global factor and an 
idiosyncratic factor 
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where W(g) and W(i) are independent Brownian motions, and ρ is the correlation between the 
global factor and the entity. Notoriously, there is no single value of this parameter which 
reprices all the tranches correctly. 
 
Our new model is based on the BVG processes X(ρ, γ, λ) we have described above. The 
model is again that X(i) is a BVG equal to the sum of a global BVG factor and an idiosyncratic 
BVG factor: 
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The jump parameters γ and λ are as before. They can be calculated either by calibrating the 
CDS curves in the basket, or by calibration to tranche prices. The new parameters ρ and 
φ are generalised “correlations”. The parameter ρ is the “Brownian correlation” which is the 
fraction of Brownian noise attributed to global factors. The other parameter φ is the “jump 
correlation” which is the fraction of incoming jumps due to global factors. 
 
Other previous approaches to CDO modelling with jumps include Joshi and Stacey (2005), 
Luciano and Schoutens (2005), and Moosbrucker (2006). These have various ways of 
introducing dependency, but only use purely discontinuous processes. 
 
The new approach is different from these earlier models in two important respects. Firstly the 
process contains both Brownian motion and a variance gamma. This allows jumps to be 
placed within the context of an otherwise continuously evolving market. Secondly, the new 
model allows both the continuous and discontinuous components to be divided between 
global and idiosyncratic effects. Not every jump is global, and not every continuous evolution 
is idiosyncratic. 
 
This new model addresses many of the problems of the Gaussian copula “Base Correlation” 
method. It is an actual model with dynamics. It is arbitrage-free. Bespoke tranches can be 
confidently priced. Bespoke baskets can also be priced, subject to reasonable estimation of 
the four parameters, of which the two jump parameters can be referenced to the CDS curves 
in the basket. Parameters are stable and credible. Derived products can, in theory, be priced 
though much work remains on this point. 
 



 5

3.1 Fitting CDX 
 
We work with the CDX 125 S5 basket. We calibrate the four parameters to the 5y tranche 
prices. For the market of 9 March 2006, the jump parameters are γ of 8.2% and λ of 15%. The 
correlations are ρ as 40.5% and φ as 9.7%. 
 
Comparing prices for a range of tranches and maturities we have: 
 
 5y CDX 125 S5 7y CDX 125 S5 10y CDX 125 S5 

Tranche Market Model Market Model Market Model 
0% - 3% 33.0% 33.0% 51.3% 48.4% 59.0% 55.4% 
3% - 7% 84.0 84.2 243.3 288.2 609.8 642.1 

7% - 10% 17.4 17.2 36.6 35.2 101.7 177.0 
10% - 15% 9.5 10.7 18.9 17.5 51.1 45.4 
15% - 30% 4.0 5.0 6.2 8.1 13.4 13.8 
30%-100% 1.9 0.7 2.8 0.9 5.0 1.4 
 
The model fits the 5y market quite well, especially when we remember that it is using only 
four parameters. For longer maturities, to which we did not calibrate, there are larger 
differences especially for the mezzanine tranches and (consequently) the super senior.  
 
3.2 Fitting iTraxx 
 
Repeating the process for iTraxx 125 S4, we calibrate jump parameters γ of 15.5% and λ of 
15%, and fit the correlations ρ as 10.8% and φ as 9.4%. The table of prices is: 
 
 5y iTraxx 125 S4 7y iTraxx 125 S4 10y iTraxx 125 S4 

Tranche Market Model Market Model Market Model 
0% - 3% 26.5% 26.5% 47.7% 48.2% 57.7% 58.9% 
3% - 6% 66.4 66.4 220.6 269.9 614.4 695.6 
6% - 9% 22.5 22.3 49.8 44.5 130.9 177.4 

9% - 12% 11.8 12.4 27.4 24.6 53.9 49.0 
12% - 22% 4.7 5.4 9.6 11.1 20.0 20.9 
22%-100% 1.4 0.6 3.7 0.9 6.4 1.4 
 
Again the 5y fit is good, but the longer-dated tranches are different in the mezzanine and 
super senior. 
 
3.3 Remarks on fitting 
 
The fittings shown above are typical for this four-parameter model with no term structure. The 
fitting is not perfect in two particular respects. Firstly, the CDO-fitted gamma and lambda 
parameters need not equal the CDS-fitted values, and the gamma parameter particularly 
does not. The CDS fitting above was tentative, but the gamma difference is an inconsistency.  
 
Secondly, the longer-term dates are not as good as 5y. More accurate fittings for 7y and 10y 
can be achieved by having a term structure for the parameters, or by allowing the up-jump 
size to be smaller than the down-jump size. But the mezzanine/super senior feature still 
remains. We will study this in more detail. 
 
 
4. Mezzanine tranche pricing 
 
This section will address the mis-match between the market and model prices for longer-
dated mezzanine tranches. The evidence suggests that the market price is not purely rational.  
 
We will study the CDX 3%-7% tranche. At 7y the market price for this is about 244bp and the 
model price is 288bp. At 10y, the market price is 610bp and the model price is 642bp. We aim 
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to show that the market prices are not consistent with a credible set of expected tranche 
notionals. 
 
A useful quantity to study is the forward single-period CDS spread, or swaplet spread, defined 
as 
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where Df(i) is the discount factor on the ith payment date and δ(i) is the accrual fraction for the 
relevant period. Here we also use a standard approximation for including accrued interest in 
the denominator. This is the fair price to pay for forward-starting single-period credit 
protection. 
 
We can calculate the 10y strip of swaplet spreads for the tranche both under our new model 
and using market prices. Calculations under the new model are straightforward because it is 
arbitrage-free. Using market prices is harder, as there is no standard way to strip the curve, 
so we have tried to come up with a composite curve that matches the market’s tranche prices 
and has relatively regular swaplet spreads. 
 
The graph shows the swaplet spreads for both the model and the market. 
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The market curve has problems around 7y. It is not steep enough between 5y and 7y, so has 
to jump after 7y to get back to the correct trend in order to price 10y correctly. This is caused 
by the 7y mezzanine price being low in comparison with the rest of the market. 
 
Although this is not a strict arbitrage this behaviour is unintuitive and strongly suggestive that 
market prices are being driven by factors other than expectation pricing of losses under a 
consistent measure. 
 
The cause of the market’s problems could be demand and supply pressure, which can be a 
driver of the CDO market. In particular, there is much demand for investors for mezzanine 
tranches, which forces their spreads tighter. 
 
There are also “technical” factors. The market is not particularly liquid or large and is 
dominated by a relatively small number of major institutions. Those institutions may well have 
some price-setting ability.  
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Also important may be the weakness of the current generation of models, which restricts risk 
management. The Gaussian copula does not allow cross-maturity hedging. So traders might 
be unhappy to hedge, say, 7y exposure with 5y baskets. The new model gives more hedging 
power and does allow such trades. The current lack of hedging opportunities makes it easier 
to build up unrelieved demand at various points on the maturity-attachment grid. 
 
The mismatch between market and model for the super-senior tranche would also be mostly 
resolved if the market mezzanine prices adjusted to be closer to the model mezzanine prices. 
 
 
5. Parameters and their risks 
 
The basic model has just four parameters, apart from the CDS curves themselves. It is useful 
to gain an understanding of each of these parameters in turn, as well as knowledge of its 
effect on the various tranches. 
 
5.1 Phi – jump correlation 
 
The parameter φ is the correlation between an entity’s jumps and global jumps. Typical 
calibrated values lie around the 10%-20% range. This parameter is the most important driver 
of senior tranche spread. Indeed the principal way that the senior tranche can default is that if 
there is a big correlated move in many credits. Big moves can only come from the jump 
component, and to make them correlated requires φ. 
 
Increasing φ has the typical correlation impact of tightening equity tranches and widening 
senior tranches. 
 
5.2 Rho – continuous correlation 
 
The parameter ρ is the correlation between an entity’s continuous movement and global 
continuous movement. Depending on the market, it can calibrate in a range of 0% - 50%, 
though the risk to this parameter is not high. This parameter behaves similarly to the flat 
correlation in the Gaussian copula model. 
 
Increasing ρ makes the equity tranche tighter, and mezzanine tranches wider. It has no 
significant effect on senior tranches, which are relatively immune to continuous movements. 
 
5.3 Gamma – jump intensity 
 
The parameter γ controls the intensity of jumps (both global and idiosyncratic). The parameter 
is clearly important to pricing senior tranches, but two different effects are at work. If γ is 
small, then the jump term is dwarfed by the continuous term and the model reduces to the 
Gaussian copula (with correlation ρ). But conversely if γ is large then the central limit theorem 
applies to the jump term, which now approximates a Brownian motion. So the model again 
reduces to a Gaussian copula (but with correlation φ). 
 
The effect of increasing gamma can be complex. It will tighten senior spreads, and sometimes 
tighten equity or junior mezz. Other spreads will widen. 
 
5.4 Lambda – inverse jump size 
 
The parameter λ is the (inverse) size of the jumps. For individual CDS curves, lambda 
controls the slope of the CDS curve. For tranches, increasing lambda makes the jump 
component less important, and so moves the model back to being a Gaussian copula. 
 
Increasing lambda generally tightens equity and widens mezzanine. The senior effect is 
smaller and more variable. If rho is small (less than 5%), the lambda risk can change. 
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5.5 Risk summary 
 
A table of the risks is useful both to summarise these comments, and to show that the four 
parameters together give some control of the various tranches. 
 
Parameter Equity Mezzanine Senior Restrictions 
Gamma – intensity Variable Variable Tighter Gamma > 3% 
Lambda – inv. jump size Tighter Wider Small Rho > 5% 
Rho – continuous correlation Tighter Wider None  
Phi – jump correlation Tighter Wider Wider  
 
 
6. Implementation 
 
Implementation does not require Monte Carlo, though Monte Carlo simulation is certainly 
possible. Since the individual entities are conditionally independent given the global factor, 
typical existing implementations of the Gaussian copula (GC) can be converted to use the 
new model. The parts that need changing are: 
 

• calculation of the threshold level. Under GC this uses the inverse normal distribution 
function, which becomes the inverse BVG distribution function. 

• conditional survival probabilities. Under GC this uses the normal distribution function, 
which is now replaced with the BVG distribution function. 

• integration against the global factor. With GC this is a numerical integration against 
the normal distribution, which now uses the BVG distribution. 

 
In every case, all we need is the BVG distribution function. Using the representation of a BVG 
process marginal distribution as 
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we can express the distribution function of X(t) as 
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Here f(y;γ) is the density of the Gamma(γ) distribution. This integration can be done relatively 
quickly and easily. For those who integrate by Gaussian quadrature, it is convenient that the 
gamma distribution is a well-studied case. See, for example Numerical Recipes (1988), 
chapter 4.5 on the Gauss-Laguerre polynomials. 
 
Also, the Gamma distribution itself can be quickly calculated. Numerical Recipes is again a 
useful reference with a good treatment in chapter 6.2. 
 
 
7. Summary and Conclusions 
 
Skew is caused by skew. That is, CDS and CDO pricing is controlled by the tails of the model 
distributions. But the normal distribution has tails which are too light. Of the various heavy-
tailed distributions that might be suitable, we have chosen to use a sum of a continuous 
Gaussian and a discontinuous gamma. This distribution fits individual CDS curves well, 
increasing our confidence in the model. There are only two jump parameters so the model is 
not over-specified. 
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The model can also be used to price CDO tranches, along with a measure of “correlation”. 
But correlation is not one number. There are two separate correlations - the first between the 
normal components and the second between the jump components. This model fits the 
market well, with some exceptions that can be explained. 
 
The model is dynamic, arbitrage-free, and can be extended to other products. It also creates 
a framework that leaves the door open to further developments by practitioners and 
academics. Other models in the framework can be created by changing the precise form and 
parameterisation of the global and idiosyncratic factors to increase sophistication or pricing 
accuracy. 
 
An important practical point is that the model does not require a Monte Carlo implementation 
(though it is possible to do so), and CDO products can be priced using an implementation 
similar to the present standards. 
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