Trading Without Regret*

Michael Kearns University of Pennsylvania

Nomura Quantitative Investment Strategies Conference June 9, 2016

"No-Regret" Learning

- Have a set of N "signals" or "predictors"
 - alphas, advisors, returns of funds, long/short instruments,...
- Each trading period, each predictor receives an arbitrary payoff
 - no stochastic assumptions; could be generated by all-knowing adversary
 - predictors could have side information, expertise, specialization, omniscience, etc.
 - will assume boundedness of payoffs
- Algorithm maintains dynamic weighting/portfolio over predictors
 - receives weighted payoff each period
- Goal: over T periods, payoff close to the best predictor in hindsight
 - for any sequence of predictor payoffs
 - "no regret": (best payoff algo payoff) grows sublinearly in T (\rightarrow 0 per period)
 - not competing with optimal (switching) policy
- Contrast with boosting criterion
 - trying to *track* best, not to *beat* best
 - "needle in a haystack" vs. "wisdom of crowds"
- Obvious appeal in financial settings

Multiplicative Weights algorithm

Initialization: Fix an $\eta \leq \frac{1}{2}$. With each decision *i*, associate the weight $w_i^{(1)} := 1$. For t = 1, 2, ..., T:

- Choose decision *i* with probability proportional to its weight w_i^(t). I. e., use the distribution over decisions p^(t) = {w₁^(t)/Φ^(t),...,w_n^(t)/Φ^(t)} where Φ^(t) = Σ_iw_i^(t).
- Observe the costs of the decisions m^(t).
- 3. Penalize the costly decisions by updating their weights as follows: for every decision i, set

$$w_i^{(t+1)} = w_i^{(t)} (1 - \eta m_i^{(t)})$$
(2.1)

[Arora, Hazan, Kale]

Theorem 4.6 The Polynomial Weights (PW) algorithm, using $\eta \leq 1/2$, for any [0,1]-valued loss sequence and for any k has,

$$L_{\text{PW}}^T \le L_k^T + \eta Q_k^T + \frac{\ln(N)}{\eta} \,,$$

where $Q_k^T = \sum_{t=1}^T (\ell_k^t)^2$. Setting $\eta = \min\{\sqrt{(\ln N)/T}, 1/2\}$ and noting that $Q_k^T \leq T$, we have $L_{\text{PW}}^T \leq L_{\min}^T + 2\sqrt{T \ln N}$.

[Blum & Mansour]

Remarks

- No-regret algos and analyses have long and rich history
 - 1950s: Blackwell approachability
 - modern connections to Black-Scholes (non-stochastic derivation)
- Strong connections to game theory
 - minimax theorem and linear programming
 - convergence to Nash and correlated equilibrium
- Demystification #1: "Follow the Leader" has regret ~ # of lead changes
- Demystification #2: log(N) regret term means cannot try "everything"
 - e.g. can't predict sequence of T coin flips by adding all 2^T possible predictors
- Under stochastic assumptions, often recover (near) optimal solutions

UNIVERSAL PORTFOLIOS

THOMAS M. COVER¹

Departments of Statistics and Electrical Engineering, Stanford University, Stanford, CA

We exhibit an algorithm for portfolio selection that asymptotically outperforms the best stock in the market. Let $\mathbf{x}_i = (x_{i1}, x_{i2}, \ldots, x_{im})^i$ denote the performance of the stock market on day *i*, where x_{ij} is the factor by which the *j*th stock increases on day *i*. Let $\mathbf{b}_i = (\mathbf{b}_{i1}, \mathbf{b}_{i2}, \ldots, \mathbf{b}_{im})^i$, $\mathbf{b}_{ij} \ge 0$, $\Sigma_j \mathbf{b}_{ij} = 1$, denote the proportion \mathbf{b}_{ij} of wealth invested in the *j*th stock on day *i*. Then $S_n = \prod_{i=1}^n \mathbf{b}_i^i \mathbf{x}_i$ is the factor by which wealth is increased in *n* trading days. Consider as a goal the wealth $S_n^* = \max_{\mathbf{b}} \prod_{i=1}^n \mathbf{b}_i^i \mathbf{x}_i$ that can be achieved by the best constant rebalanced portfolio chosen *after* the stock outcomes are revealed. It can be shown that S_n^* exceeds the best stock, the Dow Jones average, and the value line index at time *n*. In fact, S_n^* usually exceeds these quantities by an exponential factor. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$, be an arbitrary sequence of market vectors. It will be shown that the nonanticipating sequence of portfolios $\hat{\mathbf{b}}_k = \{\mathbf{b} \prod_{i=1}^{k-1} \mathbf{b}_i \mathbf{x}_i d\mathbf{b} / \prod_{i=1}^{k-1} \mathbf{b}_i \mathbf{x}_i d\mathbf{b}$ yields wealth $\hat{S}_n = \prod_{k=1}^n \hat{\mathbf{b}}_k^k \mathbf{x}_k$ such that $(1/n) \ln(S_n^*/S_n) \to 0$, for every bounded sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$, and, under mild conditions, achieves

$$\hat{S}_n \sim \frac{S_n^*(m-1)!(2\pi/n)^{(m-1)/2}}{|J_n|^{1/2}}.$$

where J_n is an $(m-1) \times (m-1)$ sensitivity matrix. Thus this portfolio strategy has the same exponential rate of growth as the apparently unachievable S_n^{\bullet} .

KEYWORDS: portfolio selection, robust trading strategies, performance weighting, rebalancing

FIGURE 8.4. The portfolio $\hat{\mathbf{b}}_k$.

Figure 1: Comparison of wealths achieved by the best constant-rebalanced portfolio, the $EG(\eta)$ -update, the universal portfolio algorithm and the best stock for a portfolio consisting of Commercial Metals and Kin Ark.

[Helmbold, Schapire, Singer, Warmuth]

Unfortunately...

- Large N and sideways markets create serious challenges
- Main issue: multiplicative updates lead to portfolio concentration
- Additive loss functions → lack of *risk* considerations
- Fiddling with learning rate doesn't help

Even Worse...

- Could ask for no regret to best strategy in *risk-adjusted metrics:*
 - Sharpe Ratio: μ(returns)/σ(returns)
 - Mean-Variance: μ (returns) σ (returns)
- Strong negative results:
 - No-regret provably impossible
 - Lower bounds on *competitive ratio* for any algorithm
- Intuition: Volatility introduces switching costs
- Alternative approach:
 - Measure risk by typical loss (e.g. one standard deviation)
 - Internalize risk within strategies

No-Regret Under Inventory Constraints

- Can't control Sharpe Ratio, but can limit allowed positions/portfolios
- Restrict to portfolios with daily standard deviation PNL at most \$X historically
- Leads to elliptical constraint in portfolio space depending on correlations
- Only compete with strategies:
 - Obeying inventory constraints
 - Making only local moves (limit market impact)
- Combine no-regret with pursuit-evasion to recover (theoretical) guarantees

[Dworkin, K., Nevmyvaka]

Conclusions

- No-regret learning: rich history, powerful theory
- Deviations from additive loss (e.g. risk) present difficulties
- One workaround: endogenize risk
- Other uses: parameter optimization

Contact: mkearns@cis.upenn.edu