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“No-Regret” Learning

Have a set of N “signals” or “predictors”
— alphas, advisors, returns of funds, long/short instruments,...
Each trading period, each predictor receives an arbitrary payoff
— no stochastic assumptions; could be generated by all-knowing adversary
— predictors could have side information, expertise, specialization, omniscience, etc.
— will assume boundedness of payoffs
Algorithm maintains dynamic weighting/portfolio over predictors
— receives weighted payoff each period
Goal: over T periods, payoff close to the best predictor in hindsight
— for any sequence of predictor payoffs
— “no regret”: (best payoff — algo payoff) grows sublinearly in T (=0 per period)
— not competing with optimal (switching) policy
Contrast with boosting criterion
— trying to track best, not to beat best
— “needle in a haystack” vs. “wisdom of crowds”

Obvious appeal in financial settings



Multiplicative Weights algorithm

Initialization: Fix an 1) < 3. With each decision i, associate the weight w;'! := 1.
Forr=1,2,....T:

1. Choose decision { with probability proportional to its weight Wit L e., use the distribution
over decisions p) = {1 /@, .., w, ) /@1)} where &) = Fwi0.

2. Observe the costs of the decisions m™’.

3. Penalize the costly decisions by updating their weights as follows: for every decision i, set

il = wz{']'{l _ ﬂ,,tf{fl] (2.1)

[Arora, Hazan, Kale]

Theorem 4.6 The Polynomial Weights (PW) algorithm, using n < 1/2,
for any [0, 1]-valued loss sequence and for any k has,

. , n lﬂ{;ﬁ'l'.r]
Ly < L +0Qi + —

where Q = Y-, (£)*. Setting n = min{\/(InN)/T,1/2} and noting that
QT < T, we have Ly < LT, 4+ 24/TIn N.t

[Blum & Mansour]




Remarks

No-regret algos and analyses have long and rich history
— 1950s: Blackwell approachability
— modern connections to Black-Scholes (non-stochastic derivation)

Strong connections to game theory
— minimax theorem and linear programming
— convergence to Nash and correlated equilibrium

Demystification #1: “Follow the Leader” has regret ~ # of lead changes

Demystification #2: log(N) regret term means cannot try “everything”
— e.g. can't predict sequence of T coin flips by adding all 2T possible predictors

Under stochastic assumptions, often recover (near) optimal solutions
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UNIVERSAL PORTFOLIOS
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We :n;hihil an algorithm for portfolio selection that asymptotically outperforms the best
stock in the market. Let x; = (X, X3, . - . , Xy ) denote the performance of the siock
market on day i, where xj; is the factor l:lz.r whlch the jth stock increases on day /.
Let b; = {by, by, ..., m:l » b= 0, L;by ., denote the proportion b, of wealth
invested in the Jth stock on -:Ia}r i. Th-:n f = [I,.. bjx; is the factor by which wealth
is increased in n trading days. Consider as a goal the wealth 57 = max, 17, b'x; that can
be achieved by the best constant rebalanced portfolio chosen q.mr the :tndt outcomes are
revealed. It can be shown that 5 exceeds the best stock, the Dow Jones average, and the
value line index at time n. In Fm:l. 57 usually exceeds these quantities by an exponential
factor. Let x;, x;, ..., be an arbitrary sequence of market vectors. It will be shown
that the nonanticipating sequence of pnrll‘nhus jbn,_,' by, db/ [T b, db yields
wealth 5, = I17_, b}x, such that (1/m)ln(8] .-"3} 0, for every bounded sequence
Ny, X3, . . . , and, under mild conditions, achieves

8 Srim = 131{2x/m)im-1112
" a2 |

where J. isan {(m = 1) ® {m = 1) sensitivity matrix. Thus this portfolio strategy has the
same exponential rate of growth as the apparently unachievable 5.

KeyworDs: portfolio selection, robust trading strategics, performance weighting,
rebalancing
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Figure 1: Comparison of wealths achieved by the best constant-rebalanced portfolio, the EG(7)-
update, the universal portfolio algorithm and the best stock for a portfolio consisting of Commercial

Metals and Kin Ark.
[Helmbold, Schapire, Singer, Warmuth]



Unfortunately...

« Large N and sideways markets create serious challenges

« Main issue: multiplicative updates lead to portfolio concentration
« Additive loss functions - lack of risk considerations

« Fiddling with learning rate doesn’t help
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Even Worse...

Could ask for no regret to best strategy in risk-adjusted metrics:
— Sharpe Ratio: p(returns)/o(returns)
— Mean-Variance: u(returns) - o(returns)
Strong negative results:
— No-regret provably impossible
— Lower bounds on competitive ratio for any algorithm
Intuition: Volatility introduces switching costs

Alternative approach:
— Measure risk by typical loss (e.g. one standard deviation)
— Internalize risk within strategies



No-Regret Under Inventory Constraints

Can’t control Sharpe Ratio, but can limit allowed positions/portfolios
Restrict to portfolios with daily standard deviation PNL at most $X historically
Leads to elliptical constraint in portfolio space depending on correlations

Only compete with strategies:
— Obeying inventory constraints
— Making only local moves (limit market impact)

Combine no-regret with pursuit-evasion to recover (theoretical) guarantees
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[Dworkin, K., Nevmyvaka]



Conclusions

* No-regret learning: rich history, powerful theory

« Deviations from additive loss (e.g. risk) present difficulties
* One workaround: endogenize risk

« Other uses: parameter optimization

Contact: mkearns@cis.upenn.edu






