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Key Points
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• Quantitative Meta-Strategies (QMS) are quantitative strategies 
designed to manage investment strategies.

• As a field, QMS is the mathematical study of the decisions made by 
the supervisor of a team of investment managers, regardless of 
whether their investment style is systematic or discretionary.

• Some advantages that QMS offer are:

– Algorithmized investment processes can be tested and improved 
before being applied to a business.

– They provide objective and consistent oversight, and help prevent 
repeated mistakes.

– They are scalable and speed up quality improvement by limiting 
managerial frictions and biases.



SECTION I
The Art & Science of Investing



Investing is Not an Art
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• Popular view: Investing is an Art because…

– It does not follow fixed rules (…unlike Art!)

– Like a sport or game, excellence cannot be taught, but it can 
only be learned through practice.

• Reality: Sports, Games, Arts increasingly rely on Math.

Any game can be studied mathematically. 
For decades it was thought that the 
sheer number of combinations involved 
in Chess would mean that computers 
would never beat top players. In 1996, 
IBM’s Deep Blue settled that question.

Today, some of the most successful 
hedge funds are math-oriented.

http://www.financial-math.org/blog/2014/04/faqs-on-backtest-overfitting/


Investing is Not an Academic Endeavor
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• Academic view: Like physical objects, Markets follow 
fundamental principles that can be studied.

• Reality: Investing differs from Physics in several aspects:

– There are no “laboratories”: We cannot reproduce experiments 
under controlled conditions.

– Low signal-to-noise leads to the proliferation of false positives

– Effects are not immutable: Competition arbitrages them away.

We will never know if Mr. Sarao caused the Flash Crash. 
Unlike in physics, we cannot repeat the events of that day 
in absence of Mr. Sarao’s spoofing.

In the words of Prof. Campbell Harvey (President-Elect of 
the American Finance Association) “most claimed 
research findings in financial economics are likely false”.

http://ssrn.com/abstract=2249314
http://www.huffingtonpost.com/david-h-bailey/lessons-from-the-flash-cr_b_7148898.html
http://www.afajof.org/details/page/2866261/Officers-and-Directors.html
http://ssrn.com/abstract=2249314


Investing is an Industrial Science
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• In contrast with Academic Finance:

– Financial firms can conduct research in terms analogous to 
Scientific laboratories. E.g., deploy an execution algorithm and 
experiment with alternative configurations (market interaction).

– Financial firms can control for the increased probability of false 
positives that results from multiple testing, because they can 
take into account the results from all trials.

– Financial firms do not necessarily report their discoveries, thus 
discovered effects are more likely to persist.

• Conclusion #1: Empirical Finance discoveries are more 
likely to occur in the Industry than in Academia.

• QMS are investment processes geared towards taking 
advantage of those industrial discoveries.



SECTION II
Strategy Selection / PM Hiring



Strategy Selection Under Multiple Testing
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• PROPOSITION #1: Suppose N independent trials 
following a Normal distribution, with mean 

𝐸  𝑆𝑅𝑛 = 0 and variance 𝑉  𝑆𝑅𝑛 . Then, the 

expected maximum Sharpe Ratio is

𝐸 𝑚𝑎𝑥  𝑆𝑅𝑛

≈ 𝑉  𝑆𝑅𝑛 1 − 𝛾 𝑍−1 1 −
1

𝑁
+ 𝛾𝑍−1 1 −

1

𝑁
𝑒−1

where 𝜸 is the Euler-Mascheroni constant (approx. 0.5772), Z is the 
CDF of the Standard Normal and e is Euler’s number.



Backtest Overfitting
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grows, for 𝐸  𝑆𝑅𝑛 = 0

and 𝑉  𝑆𝑅𝑛 ∈ 1,4 . 

Searching for empirical 
findings regardless of 
their theoretical basis 
is likely to magnify the 

problem, as V  𝑆𝑅𝑛
will increase when 
unrestrained by theory.

This is a consequence of pure random behavior. We will observe better candidates even 

if there is no investment skill associated with this strategy class (𝐸  𝑆𝑅𝑛 = 0).

E max  𝑆𝑅𝑛 ≈ V  𝑆𝑅𝑛 1 − 𝛾 Z−1 1 −
1

𝑁
+ 𝛾Z−1 1 −

1

𝑁
𝑒−1

http://ssrn.com/abstract=2308659


The Backtest Overfitting Simulation Tool
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An “optimized” investment strategy (in 
blue) making steady profit while the 
underlying trading instrument (in green) 
gyrates in price. It is trivial to make 
Financial “discoveries” if enough 
variations are tried.

http://datagrid.lbl.gov/backtest/index.php

The same investment strategy performs 
poorly on a different sample of the same 
trading instrument.

http://datagrid.lbl.gov/backtest/index.php


The Deflated Sharpe Ratio (1/2)
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• The Deflated Sharpe Ratio (DSR) corrects the inflationary effect of 
multiple trials, non-normal returns and shorter sample lengths:

 𝐷𝑆𝑅 ≡  𝑃𝑆𝑅  𝑆𝑅0 = 𝑍
 𝑆𝑅 −  𝑆𝑅0 𝑇 − 1

1 −  𝛾3 𝑆𝑅 +
 𝛾4 − 1
4

 𝑆𝑅2

where

 𝑆𝑅0 = 𝑉  𝑆𝑅𝑛 1 − 𝛾 𝑍−1 1 −
1

𝑁
+ 𝛾𝑍−1 1 −

1

𝑁
𝑒−1

DSR is a Probabilistic Sharpe Ratio where the rejection threshold is 
adjusted to reflect the multiplicity of trials.

http://ssrn.com/abstract=2460551


The Deflated Sharpe Ratio (2/2)
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• The standard Sharpe Ratio (SR) is computed as a 
function of two estimates:

– Mean of returns

– Standard deviation of returns.

• DSR deflates SR by taking into consideration five 
additional variables (it packs more information):

– The non-Normality of the returns  𝛾3,  𝛾4
– The length of the returns series 𝑇

– The variance of the SRs tested 𝑉  𝑆𝑅𝑛

– The number of independent trials involved in the 
selection of the investment strategy 𝑁



Numerical Example (1/2)
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• An analyst uncovers a daily strategy with annualized SR=2.5,

after running N=100 independent trials, where 𝑉  𝑆𝑅𝑛 =
1

2
, 

T=1250,  𝛾3 = −3 and  𝛾4 = 10.

• QUESTION: Is this a legitimate discovery, at a 95% conf.?

• ANSWER: No. There is only a 90% probability that the true 
Sharpe ratio is above zero.

–  𝑆𝑅0 =
1

2∙250
1 − 𝛾 𝑍−1 1 −

1

100
+ 𝛾𝑍−1 1 −

1

100
𝑒−1 ≈

0.1132

–  𝐷𝑆𝑅 ≈ 𝑍

2.5

250
−0.1132 1249

1− −3
2.5

250
+
10−1

4

2.5

250

2
= 0.9004.



Numerical Example (2/2)
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Should the strategist have 
made his discovery after 
running only N=46, then 
 𝐷𝑆𝑅 ≈ 0.9505.

Non-Normality also played a 
role in discarding this 
investment offer: For  𝛾3 =
0,  𝛾4 = 3, then  𝐷𝑆𝑅 =
0.9505 after N=88
independent trials.
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It is critical for investors to account for both sources of 
performance inflation jointly, as DSR does.



SECTION III
Portfolio Oversight



Finance and the Theory of Evolution

• Standard structural break tests (see Maddala and Kim 
[1999]) attempt to identify a “break” or permanent shift
from one regime to another within a time series.

• In contrast, the methodology we present here signals the 
emergence of a new regime as it happens, while it co-
exists with the old regime (thus the mixture). 

• This is a critical advantage, in terms of providing an early 
signal that a new investment style is emerging in a fund 
or portfolio.

• Conclusion #2: Evolutionary divergence attempts to 
signal the emergence of a new investment style before it 
is so prevalent that a “break” can be detected.
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http://ssrn.com/abstract=1931734


Action plan

1. Apply the EF3M algo for matching the track record’s 
moments (we have already seen this step).

2. Simulate path scenarios consistent with the matched 
moments.

3. Derive a distribution of scenarios based on that match.

4. Probability of Divergence (PD): Evaluate what percentile 
of the distribution corresponds with the PM’s recent 
performance.

Conclusion #3: PD assesses the evolutionary divergence by 
taking into account the entire distribution of the possible 
mixture parameters, based on the reliable moments.

17



An Example
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Errors Average StDev

1 0.00E+00 0.00E+00

2 0.00E+00 0.00E+00

3 0.00E+00 0.00E+00

4 -3.80E-11 2.54E-11

5 -5.93E-12 3.01E-11

Parameter Average StDev

Mu1 -0.0245 0.0027

Mu2 0.0150 0.0001

Sigma1 0.0201 0.0009

Sigma2 0.0100 0.0002

Prob1 0.1026 0.0144

0
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0.01
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0.014

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

pdf1 pdf2 pdf Mixture pdf Normal

• Suppose a mixture of 2 Gaussians with true parameters
 𝜇1,  𝜇2,  𝜎1,  𝜎2,  𝑝 = −0.025, 0.015,0.02,0.01,0.1 .

Moments Origin Mean

1 1.10E-02 0

2 3.95E-04 2.74E-04

3 2.53E-06 -7.85E-06

4 4.31E-07 5.63E-07

5 -7.48E-09 -3.28E-08

True raw moments

Fitted Parameters

Estimation Errors



Example 1 (1/2)

• Reference: Suppose that a PM has a track record 
consistent with the following Mixture of 2-Gaussians

 𝜇1,  𝜇2,  𝜎1,  𝜎2,  𝑝 = −0.025, 0.015,0.02,0.01,0.1

• Divergence: What would happen if draws from the 
first Gaussian become more likely? For example, if 
p=0.2 instead of p=0.1, the mixture’s distribution 
would become more negatively skewed and fat-
tailed.

19



Example 1 (2/2)

That situation 
is distinct 
from the 
approved 
track-record, 
and PD slowly 
but surely 
converges to 
1. 
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Example 2 (1/2)

• Reference: Suppose that a PM has a track record 
consistent with the following Mixture of 2-Gaussians

 𝜇1,  𝜇2,  𝜎1,  𝜎2,  𝑝 = −0.025, 0.015,0.02,0.01,0.1

• Divergence: What would happen if, after capital is 
allocated, returns are IID Normal, matching the 
mixture’s mean and variance, i.e. 

𝑁  𝜇,  𝜎2 = 𝑁 1.10𝐸 − 02,2.74𝐸 − 04

21



Example 2 (2/2)

PD approaches 
1, although the 
model cannot 
completely 
discard the 
possibility that 
these returns in 
fact were drawn 
from the 
reference 
mixture.
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Example 3 (1/2)

• Reference: Suppose that a PM has a track record 
consistent with the following Mixture of 2-Gaussians

 𝜇1,  𝜇2,  𝜎1,  𝜎2,  𝑝 = −0.025, 0.015,0.02,0.01,0.1

• Divergence: What would happen if, after capital is 
allocated, returns are IID Normal with a mean half 
the mixture’s and the same variance as the mixture…

𝑁  𝜇,  𝜎2 = 𝑁 5.5𝐸 − 03,2.74𝐸 − 04

23



Example 3 (2/2)

PD quickly 
converges to 1, 
as the model 
recognizes that 
those Normally 
distributed 
draws do not 
resemble the 
mixture’s 
simulated 
paths. 
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SECTION IV
Decommissioning of Strategies / PMs



The Triple Penance Rule (1/2)

26

• THEOREM #1: Under IID Normal outcomes, a strategy’s 
maximum quantile-loss 𝑀𝑎𝑥𝑄𝐿𝛼 for a significance level 𝛼
occurs after 𝑡𝛼

∗ observations. Then, the strategy is 
expected to remain under water for an additional 3𝑡𝛼

∗

after the maximum quantile-loss has occurred, with a 
confidence 1 − 𝛼 .

• If we define 𝑃𝑒𝑛𝑎𝑛𝑐𝑒: =
𝑇𝑢𝑊𝛼

𝑡𝛼
∗ − 1, then the “triple 

penance rule” tells us that, assuming independent ∆𝜋𝜏
identically distributed as Normal (which is the standard 
portfolio theory assumption), 𝑷𝒆𝒏𝒂𝒏𝒄𝒆 = 𝟑, regardless 
of the Sharpe ratio of the strategy.



The Triple Penance Rule (2/2)
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Example 1
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PM1 has an annual mean 
and standard deviation of 
US$10m (SR=1), and PM2 
has an annual mean of 
US$15m and an annual 
standard deviation of 
US$10m (SR=1.5).

For a ~92% confidence level, 
PM1 reaches a maximum 
drawdown at US$5,000,000 
after 0.5 years, and remains 
up to 2 years under water.

For a ~98% confidence level, 
PM2 reaches a maximum 
drawdown at US$7,500,000 
after 0.5 years, and remains 
up to 2 years under water.

𝑇𝑢𝑊0.08 𝑃𝑀1 = 𝑇𝑢𝑊0.02 𝑃𝑀2

𝑀𝑎𝑥𝑄𝐿0.08[𝑃𝑀1]

𝑀𝑎𝑥𝑄𝐿0.02[𝑃𝑀2]

3𝒕𝜶
∗𝑡𝛼

∗



A Better Way to Stop-Out
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• Given a realized performance  𝜋𝑡 < 0 and assuming IID 
Normal returns with mean 𝜇 > 0, the Implied Time 
Under Water (ITuW) is

𝐼𝑇𝑢𝑊 𝜋𝑡 =
 𝜋𝑡

2

𝜇2𝑡
− 2

 𝜋𝑡
𝜇
+ 𝑡

• The above equation translates a realized loss into time 
under water.

• It makes sense stopping-out strategies based on their 
expected recovery time, rather than waiting for a fixed 
loss threshold to be hit.



Implications of the Triple Penance Rule
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1. It makes possible the translation of drawdowns in terms 
of time under water.

2. It sets expectations regarding how long it may take to 
earn performance fee (for a certain confidence level).
– The remaining time under water may be so long that 

withdrawals are expected. This has implications for the firm’s 
cash management.

3. It shows that the penance period is independent of the 
Sharpe ratio (in the IID Normal case).
– E.g., if a PM makes a fresh new bottom after being one year 

under water, it may take him 3 years to recover, under the 
confidence level associated with that loss. This holds true 
whether that PM has a Sharpe of 1 or a Sharpe of 10.



SECTION V
Conclusions



Pros & Cons of Classic Approaches vs. QMS
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Practical 

Application
Classic approach Quantitative Meta-Strategy

Hiring

(Example 1)

Interview candidates with SR (or any

other performance statistic) and track

record length above a given threshold.

Pros: Trivial to implement.

Cons: Unknown (possibly high)

probability of hiring unskilled PMs.

Design an interview process that recognizes the variables that

affect the probability of making the wrong hire:

 False positive rate.

 False negative rate.

 Skill-to-unskilled odds ratio.

 Number of independent trials.

 Sampling mechanism.

Pros: It is objective and can be improved over time, based on

measurable outcomes.

Cons: More laborious.

Oversight

(Example 2)

Allocate capital as if PMs were asset

classes.

Pros: Trivial to implement.

Cons: Correlations are unstable,

meaningless. Risks are likely to be

concentrated.

Recognize that PMs styles evolve over time, as they adapt to

a changing environment.

Pros: It provides an early signal while the style is still

emerging. Allocations can be revised before it is too late.

Cons: Allocation revisions may be needed on an irregular

calendar frequency.

Stop-Out 

(Example 3)

Stop-out a PM once a certain loss limit

has been exceeded.

Pros: Trivial to implement.

Cons: It allows preventable problems to

grow until it is too late.

For any drawdown, large or small, determine the expected

time underwater and monitor every recovery. Even if a loss is

small, a failure to recover within the expected timeframe

indicates a latent problem.

Pros: Proactive. Address problems before they force a stop-

out.

Cons: PMs may feel under tighter scrutiny.



THANKS FOR YOUR ATTENTION!
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SECTION VI
The stuff nobody reads
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